

    
      
          
            
  
Welcome to OmMongo’s documentation!


Contents:



	A Quick OmMongo Introduction

	MongoAlchemy in-depth Tutorials
	References Tutorial (Coming Soon)

	Transactions and Caching Tutorial (Coming Soon)

	Query Language Tutorial (Coming Soon)

	Update Expressions Tutorial (Coming Soon)

	Custom Field Tutorial (Coming Soon)





	API documentation
	Session

	Schema — Document-Object Mapper and Schema Definitions
	Documents and Indexes

	Field Types





	Field Types

	Documents and Indexes

	Expression Language — Querying and Updating
	Query Objects

	Mongo Query Expression Language

	Update Expressions

	Remove Queries

	Find and Modify





	Exceptions





	Examples








Introduction

OmMongo is a layer on top of the Python MongoDB driver which adds
client-side schema definitions, an easier to work with and programmatic query
language, and a Document-Object mapper which allows python objects to be saved
and loaded into the database in a type-safe way.

An explicit goal of this project is to be able to perform as many operations
as possible without having to perform a load/save cycle since doing so is both
significantly slower and more likely to cause data loss.

There’s more detail in the tutorial, but a small example is on
this page below the contents of the documentation.

A Tour of OmMongo’s Features




Object-Document Mapping

Turn MongoDB documents into Python objects and vice-versa, add schemas and
validatation to your models, and allow the separation of the python and
mongo representations of your data.


	Support for all of the basic mongo types.

	Separate Python and Mongo names. Field and collection names can be
overridden.

	Indexing on dict keys.  MA provides a dict-like field which can have
arbitrary key and value types as well as allowing indexing on the keys —
not normally possible in Mongo. See: KVField

	Computed values, generate from other fields.
See: ComputedField

	Created and Modified fields based on the computed fields which record the
date something was first created or last updated.

	Timezone support.  A timezone can be passed using pytz and all dates will
have timezone data attached and be converted to the given timezone.

	User-defined validation — Provide your own validation functions for
simple validations of fields.  See Field

	User-defined fields — For more customization, entirely new fields can be
created

	A field that can hold arbitrary values: AnythingField

	Validation happens at assignment time, so you’ll know exactly where

	Indexes are defined on the class






Sessions and Query Language


	Type-safe queries. Queries are validated to make sure the values passed are
allowed in the query fields.



	Faux-Transactions. When using the session with the with statement updates
are accumulated until the block is done, making it much less likely that a
python error will leave your database in a bad state.



	Automatically Calculated Updates — The session object has an ommongo.session.Session.update()
function which determines which fields are dirty and will execute the
appropriate update operations to update the object in the database.



	Drop into raw Mongo. Most functions will accept raw pymongo instead of
the ommongo objects. Type safety will be maintained either way

For example:

session.query('SomeClass').filter(SomeClass.name == foo).limit(5)





is perfectly valid, as is:

session.query(SomeClass).filter({'name':'foo'})












Installation

pip install OmMongo

You can also download the source code from the Python Package index or GitHub:

The source code is available at: https://github.com/bapakode/OmMongo

The PyPi page is located here: https://pypi.python.org/pypi/OmMongo/




Examples

>>> from ommongo.session import Session
>>> from ommongo.document import Document, Index
>>> from ommongo.fields import *
>>> # Subclasses of Document both provide the mapping needed for
... # queries as well as the classes for loading/saving objects.
... class User(Document):
...     config_collection_name = 'users'
...
...     # Setting the possible values by using fields
...     first_name = StringField()
...     last_name = StringField()
...     age = IntField(min_value=0, required=False)
...
...     # db_field allows a different DB field name than the one on the
...     # python object
...     email = StringField(db_field='email_address')
...     bio = StringField(max_length=1000, required=False)
...
...     # A computed field decorator allows values
...     @computed_field(SetField(StringField()), deps=[bio])
...     def keywords(obj):
...         return set(obj.get('bio','').split(' '))
...
...     kw_index = Index().ascending('keywords')
...     name_index = Index().descending('first_name').ascending('last_name')
...     email_index = Index().descending('email').unique()
...
...     def __eq__(self, other):
...         return self.email == other.email
...
...     def __repr__(self):
...         return 'User(email="%s")' % self.email
...
>>> me = User(first_name='Bapak', last_name='Kode', email='opensource@bapakode.org',
...     bio='Bapakode is the author of OmMongo')
>>>
>>> me.keywords
set(['author', 'of', 'is', 'Bapakode', 'OmMongo', 'the'])
>>>
>>> # This connections to the DB and starts the session
... session = Session.connect('ommongo-intro')
>>> session.clear_collection(User) # clear previous runs of this code!
>>>
>>> # Insert on a session will infer the correct collection and push the object
... # into the database
... session.save(me)
>>> set(['author', 'of', 'is', 'Bapakode', 'OmMongo', 'the'])
>>>
>>> # Get a user with me's email address and OmMongo in their bio (via keywords)
... db_user = session.query(User).filter(User.email == 'opensource@bapakode.org').in_(User.keywords, 'OmMongo').one()
>>>
>>> db_user == me
True
>>>
>>> # Using filter_by for simple equality checking is easier
... session.query(User).filter_by(email='opensource@bapakode.org').in_(User.keywords, 'OmMongo').one()
User(email="opensource@bapakode.org")
>>>
>>> # It's also possible to do raw mongo filtering
... session.query(User).filter({'email':'opensource@bapakode.org', 'keywords':{'$in':['OmMongo']}}).one()
User(email="opensource@bapakode.org")
>>>










Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    

  

    
      
          
            
  
A Quick OmMongo Introduction


Note

This tutorial is incomplete, but hopefully has enough detail that the places to look in the API documentation for the rest is clear.



In order to use OmMongo to interact with a Mongo database, two things are
needed:


	
	a Session object to handle queuing, 

	sending, and receiving data from the database.





	
	a subclass of Document to define a mapping 

	between a mongo object and python class.  The class serves as the mapping, and instances of the class are the python classes that are saved or loaded into the database







This tutorial is going go through the basics of each of these, as well as
querying and updating in a way which is programmatic, type safe, and value
checked.


Creating a Mapping Object

>>> from ommongo.document import Document
>>> from ommongo.fields import *
>>> class BloodDonor(Document):
...     first_name = StringField()
...     last_name = StringField()
...     age = IntField(min_value=0)
...
...     gender = EnumField(StringField(), 'male', 'female')
...     blood_type = EnumField(StringField(), 'O+','A+','B+','AB+','O-','A-','B-','AB-')
...     def __str__(self):
...         return '%s %s (%s; Age: %d; Type: %s)' % (self.first_name, self.last_name,
...             self.gender, self.age, self.blood_type)





The above code creates a class BloodDoner which will has all of the
information necessary to create python objects to save, load database
objects (though there are none at the moment), and to construct queries for
these objects.

It also introduces several field subclasses which are used
to define the key/value pairs in the mongo Document.  The StringField
and IntField are fairly self-explanatory.  The
ommongo.fields.EnumField is more complex. It takes a field as its first argument
followed by any number of values of the type accepted by that field.  The
EnumField will check both that the value it is constructed with is of the
correct type, but also that its value is one of the values given in the
constructor.


See also

Document and fields






Sessions

>>> from ommongo.session import Session
>>> session = Session.connect('ommongo-tutorial')
>>> session.clear_collection(BloodDonor)





The above code creates a session object by connecting to a local mongo
server and accessing the ommongo-tutorial database.  Any arguments after
the database name will be used as arguments to pymongo’s connection function.
It’s also possible to directly construct a session using a pymongo database
object, allowing one connection to be used for multiple sessions.  The last
line clears all objects from the collection used for BloodDonor objects, in
case this tutorial code had run before.

>>> donor = BloodDonor(first_name='Jeff', last_name='Jenkins',
...             age=28, blood_type='O+', gender='male')
>>> session.save(donor)





When save is called on the donor object the session serializes it
into a form that the Mongo database understands, and then inserts it.  Once
the save command is complete the _id field of donor object is set.

To make the next section more interesting more objects are needed, so we’ll
add some of the cast of Community:

>>> session.save(BloodDonor(first_name='Jeff', last_name='Winger', age=38, blood_type='O+', gender='male'))
>>> session.save(BloodDonor(first_name='Britta', last_name='Perry', age=27, blood_type='A+', gender='female'))
>>> session.save(BloodDonor(first_name='Abed', last_name='Nadir', age=29, blood_type='O+', gender='male'))
>>> session.save(BloodDonor(first_name='Shirley', last_name='Bennett', age=39, blood_type='O-', gender='female'))








Querying

>>> for donor in session.query(BloodDonor).filter(BloodDonor.first_name == 'Jeff'):
>>>    print donor
Jeff Jenkins (male; Age: 28; Type: O+)
Jeff Winger (male; Age: 38; Type: O+)





The above code uses the query() method of
the session object to start a query on the BloodDonor collection.  The
filter function on a query object allows constraints to be added to the
results returned.  In this case all donors who have the name Jeff are being
printed.  The attributes of a Document subclass are used to access the names
of fields in such a way that they generate query expressions which filter
can use.

Multiple filters can be applied by chaining calls to filter or by adding
comma-separated query expressions inside a single call.  The following two
examples return the same results:

>>> query = session.query(BloodDonor)
>>> for donor in query.filter(BloodDonor.first_name == 'Jeff', BloodDonor.age < 30):
>>>    print donor
Jeff Jenkins (male; Age: 28; Type: O+)





>>> query = session.query(BloodDonor)
>>> for donor in query.filter(BloodDonor.first_name == 'Jeff').filter(BloodDonor.age < 30):
>>>    print donor
Jeff Jenkins (male; Age: 28; Type: O+)





Instead of getting elements by iterating on the query, the one()
and first() methods can be used.  one returns the first
result and raises an exception if there is not exactly one returned result.  first returns
the first result if there is one, and None if there is not one.


See also

Mongo Query Expression Language for all available types of query expressions






Updating

There are a number of methods available for updating results of a query (
rather than updating results by loading an object and re-inserting it).
Here’s an example where my age changed and it turned out I had the wrong
blood type:

>>> query = session.query(BloodDonor).filter(BloodDonor.first_name == 'Jeff', BloodDonor.last_name == 'Jenkins')
>>> query.inc(BloodDonor.age, 1).set(BloodDonor.blood_type, 'O-').execute()
>>> query.one()
Jeff Jenkins (male; Age: 29; Type: O-)





inc() and set()
are two of the methods which can be used to do updates on a query.  Once an update
method has been called on a query any further chaining is on a  UpdateExpression,
so no further filtering of results will be possible.  The execute()
method causes the update to actually happen in the database.

It is also possible to call update() on the session
to automatically update a particular object with an update command instead of either
saving the object again (which is synchronous) or constructing the update expression
yourself as above.

By default all fields use the set operation to update their
values, but that can be overriden by passing the on_update operator to the field constructor,
or a keyword argument to update.  The value of these arguments is currently a string with
the mongo operation you want to do instead.  For example, IntField(on_update='$inc')
is an IntField which will increment when update is called.  Session.update is still experimental,
so watch out for side-effects


See also


	Update Expressions for all available types of update expressions

	ommongo.session.Session.update() for details of automatic updates








Performance


Note

still to come!




	Indexes (For now, see Index)

	Hints (For now, see hint_asc() and hint_desc())

	Partial Document Loading (For now, see the fields parameter to Document)









          

      

      

    

  

    
      
          
            
  
MongoAlchemy in-depth Tutorials



	References Tutorial (Coming Soon)

	Transactions and Caching Tutorial (Coming Soon)

	Query Language Tutorial (Coming Soon)

	Update Expressions Tutorial (Coming Soon)

	Custom Field Tutorial (Coming Soon)









          

      

      

    

  

    
      
          
            
  
References Tutorial (Coming Soon)





          

      

      

    

  

    
      
          
            
  
Transactions and Caching Tutorial (Coming Soon)





          

      

      

    

  

    
      
          
            
  
Query Language Tutorial (Coming Soon)





          

      

      

    

  

    
      
          
            
  
Update Expressions Tutorial (Coming Soon)





          

      

      

    

  

    
      
          
            
  
Custom Field Tutorial (Coming Soon)





          

      

      

    

  

    
      
          
            
  
API documentation

Contents:



	Session

	Schema — Document-Object Mapper and Schema Definitions
	Documents and Indexes
	Document

	Index





	Field Types
	Field

	Primitive Fields

	Date and Time Fields

	Sequence Type Fields

	Mapping Type Fields

	Document Field

	Reference Field

	Computed Field









	Field Types
	Field

	Primitive Fields

	Date and Time Fields

	Sequence Type Fields

	Mapping Type Fields

	Document Field

	Reference Field

	Computed Field





	Documents and Indexes
	Document

	Index





	Expression Language — Querying and Updating
	Query Objects

	Mongo Query Expression Language
	Query Fields

	Query Expressions





	Update Expressions

	Remove Queries

	Find and Modify





	Exceptions
	Field Exceptions

	Document Exceptions

	Data Exceptions

	Session Exceptions













          

      

      

    

  

    
      
          
            
  
Session





          

      

      

    

  

    
      
          
            
  
Schema — Document-Object Mapper and Schema Definitions

Modules:



	Documents and Indexes
	Document

	Index





	Field Types
	Field

	Primitive Fields

	Date and Time Fields

	Sequence Type Fields

	Mapping Type Fields

	Document Field

	Reference Field

	Computed Field













          

      

      

    

  

    
      
          
            
  
Documents and Indexes


Document




Index







          

      

      

    

  

    
      
          
            
  
Field Types


Field




Primitive Fields




Date and Time Fields




Sequence Type Fields




Mapping Type Fields




Document Field




Reference Field




Computed Field







          

      

      

    

  

    
      
          
            
  
Field Types


Field




Primitive Fields




Date and Time Fields




Sequence Type Fields




Mapping Type Fields




Document Field




Reference Field




Computed Field







          

      

      

    

  

    
      
          
            
  
Documents and Indexes


Document




Index







          

      

      

    

  

    
      
          
            
  
Expression Language — Querying and Updating



	Query Objects

	Mongo Query Expression Language
	Query Fields

	Query Expressions





	Update Expressions

	Remove Queries

	Find and Modify









          

      

      

    

  

    
      
          
            
  
Query Objects





          

      

      

    

  

    
      
          
            
  
Mongo Query Expression Language


Query Fields




Query Expressions







          

      

      

    

  

    
      
          
            
  
Update Expressions

Updates are done by calling any of the update operations on a query object




Remove Queries

Remove queries are executed with the remove_query method on a session.
They have the same filtering methods as querying.




Find and Modify

Find and modify is done by calling find_and_modify on a query object





          

      

      

    

  

    
      
          
            
  
Exceptions


Field Exceptions




Document Exceptions




Data Exceptions




Session Exceptions







          

      

      

    

  

    
      
          
            
  
Examples

No examples yet.  There are however code snippets throughout the documentation
and a few files here: https://github.com/bapakode/OmMongo/tree/master/examples





          

      

      

    

  

    
      
          
            

   Python Module Index


   
   o
   


   
     		 	

     		
       o	

     
       	
       	
       ommongo	
       

   



          

      

      

    

  

    
      
          
            

Index



 O
 


O


  	
      	ommongo (module)


  







          

      

      

    

  _static/ajax-loader.gif





_static/down.png





_static/up.png





_static/down-pressed.png





_static/plus.png





_static/comment-close.png





_static/comment.png





_static/file.png





_static/minus.png





nav.xhtml

    
      Table of Contents


      
        		Welcome to OmMongo's documentation!


        		A Quick OmMongo Introduction


        		MongoAlchemy in-depth Tutorials
          
          		References Tutorial (Coming Soon)


          		Transactions and Caching Tutorial (Coming Soon)


          		Query Language Tutorial (Coming Soon)


          		Update Expressions Tutorial (Coming Soon)


          		Custom Field Tutorial (Coming Soon)


          


        


        		API documentation
          
          		Session


          		Schema — Document-Object Mapper and Schema Definitions
            
            		Documents and Indexes


            		Field Types


            


          


          		Field Types


          		Documents and Indexes


          		Expression Language — Querying and Updating
            
            		Query Objects


            		Mongo Query Expression Language


            		Update Expressions


            		Remove Queries


            		Find and Modify


            


          


          		Exceptions


          


        


        		Examples


      


    
  

_static/up-pressed.png





_static/comment-bright.png





